Гексоген
Гексоген | |
---|---|
| |
Общие | |
Систематическое наименование |
1,3,5-тринитро-1,3,5-триазациклогексан |
Традиционные названия | Гексоген, RDX, циклотриметилентринитрамин, циклонит |
Хим. формула | C3H6N6O6 |
Физические свойства | |
Состояние | твердое |
Молярная масса | 222,12 г/моль |
Плотность | 1,816 г/см³ |
Термические свойства | |
Температура | |
• плавления | 205,5 °C |
• кипения | 234 °C |
Давление пара | 0,0004 ± 0,0001 мм рт.ст.[1] |
Классификация | |
Рег. номер CAS | 121-82-4 |
PubChem | 8490 |
Рег. номер EINECS | 204-500-1 |
SMILES | |
InChI | |
RTECS | XY9450000 |
ChEBI | 24556 |
Номер ООН | <-- номер UN --> |
ChemSpider | 8177 |
Безопасность | |
Предельная концентрация | 1 мг/м3 |
ЛД50 | 100 мг/кг (крысы) |
Токсичность | Класс опасности 2 |
NFPA 704 | |
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. | |
Медиафайлы на Викискладе |
Гексоге́н (циклотриметилентринитрамин[2], RDX, T4) — (CH2)3N3(NO2)3, вторичное (бризантное) взрывчатое вещество. Чувствительность к удару занимает среднее положение между тетрилом и тэном.
Плотность заряда — 1,77 г/см³. Скорость детонации — 8640 м/с, давление во фронте ударной волны — 33,7 ГПа, фугасность — 470 мл, бризантность — 24 мм по Гессу, 4,1-4,8 по Касту, объём газообразных продуктов взрыва — 908 л/кг. Температура вспышки — 230 °C, температура плавления — 204,1 °C.
Теплота взрыва — 5,45 МДж/кг, теплота сгорания — 2307 ккал (9,66 МДж)/кг.[3].
Физические свойства
Гексоген — белый кристаллический порошок. Без запаха, вкуса, сильный яд. Удельный вес — 1,816 г/см³, молярная масса — 222,12 г/моль. Нерастворим в воде, плохо растворим в спирте, эфире, бензоле, толуоле, хлороформе, лучше — в ацетоне, ДМФА, концентрированной азотной и уксусной кислотах. Разлагается серной кислотой, едкими щелочами, а также при нагревании.
Плавится гексоген при температуре 204,1 °C с разложением, при этом его чувствительность к механическим воздействиям сильно повышается, поэтому его не плавят, а прессуют. Прессуется плохо, поэтому, чтобы его лучше спрессовать, гексоген флегматизируют в ацетоне.
История
Гексоген получил своё название по внешнему виду его структурной химической формулы. Впервые его синтезировал в 1890-х годах немецкий химик и инженер, сотрудник прусского военного ведомства Ленце.
Гексоген по химическому составу близок к известному лекарству уротропину, использующемуся для лечения инфекций мочевыводящих путей. Поэтому вначале гексогеном заинтересовались преимущественно фармацевты. В 1899 году немецкий химик-фармацевт Георг Фридрих Хеннинг взял патент на один из способов его производства, надеясь, что гексоген окажется ещё лучшим лекарством, чем уротропин. Однако в аптеки гексоген не попал, так как вовремя выяснилось, что он представляет собой яд.
Лишь в 1920 году австрийский химик Эдмунд фон Герц показал, что гексоген является сильнейшим взрывчатым веществом, далеко превосходящим тротил. По скорости детонации он опережал все остальные известные тогда взрывчатки, а определение его бризантной способности обычным методом было невозможно, потому что гексоген разбивал стандартный свинцовый столбик.
В сентябре 1944 года стало известно о том, что взрывчатое вещество на основе гексогена начали применять японские войска[4].
Получение
Метод Герца (1920) заключается в непосредственном нитровании гексаметилентетрамина (уротропина, (CH2)6N4) концентрированной азотной кислотой:
Производство гексогена по этому методу велось в Германии, Англии и других странах на установках непрерывного действия. Метод имеет ряд недостатков, главные из которых:
- малый выход гексогена по отношению к сырью (35-40 %);
- большой расход азотной кислоты.
В середине XX века был разработан ряд промышленных методов производства гексогена.
- Метод «К». Разработан в Германии Кноффлером. Метод позволяет повысить выход гексогена по сравнению с методом Герца за счёт добавления в азотную кислоту нитрата аммония (аммиачной селитры), который взаимодействует с побочным продуктом нитрования — формальдегидом.
- Метод «КА». По методу «КА» гексоген получается в присутствии уксусного ангидрида. В жидкий уксусный ангидрид дозируется динитрат уротропина и раствор аммиачной селитры в азотной кислоте.
- Метод «Е». Ещё один уксусноангидридный метод, по которому гексоген получается взаимодействием пара-формальдегида с аммиачной селитрой в среде уксусного ангидрида.
- Метод «W». Разработан в 1934 Вольфрамом. По этому методу формальдегид при взаимодействии с калиевой солью сульфаминовой кислоты даёт так называемую «белую соль», которая при обработке серно-азотной кислотной смесью образует гексоген. Выход по этому методу достигает 80 % по сырью.
- Метод Бахмана-Росса. Разработан в США. Метод близок к методу «КА», но за счет применения двух растворов — уротропина в уксусной кислоте и аммиачной селитры в азотной кислоте процесс значительно более технологичен и удобен:
Применение
Применяют для изготовления детонаторов (в том числе детонационных шнуров), снаряжения боеприпасов и для взрывных работ в промышленности, как правило, в смеси с другими веществами (тротилом и т. п.), а также с добавкой флегматизаторов (парафина, воска, церезина), уменьшающих опасность взрыва гексогена от случайных причин. Например, широко известная С-4 — это 91 % гексогена, 2,25 % полиизобутилена, 5,31 % диоктилсебацината и 1,44 % жидкой смазки.
Также может использоваться как компонент топлива в твердотопливных ракетных двигателях.
См. также
Примечания
- ↑ http://www.cdc.gov/niosh/npg/npgd0169.html
- ↑ Циклотриметилентринитрамин // Большой Энциклопедический словарь . — 2000.
- ↑ An Introduction to Chemical Reactions, Energy, Gases, and Chemical Explosives Архивная копия от 5 марта 2016 на Wayback Machine, Mark Bishop: «Research Department Explosive, RDX (T4) High detonation velocity ( 8700 m/s) Relative effectiveness factor of 1.6»
- ↑ Demolition equipment // Handbook on Japanese military forces. Technical Manual. TM-E 340—480 (15 September 1944) page 334
В другом языковом разделе есть более полная статья RDX (англ.). |