В математике, результантом двух многочленов и над некоторым полем, старшие коэффициенты которых равны единице, называется выражение
иными словами, это произведение попарных разностей между их корнями. Произведение здесь берётся по всем корням в алгебраическом замыкании поля с учётом их кратностей; поскольку получающееся выражение является симметрическим многочленом от корней многочленов и (лежащих, быть может, вне поля ), оно тем самым оказывается многочленом от коэффициентов и . Для многочленов, старшие коэффициенты которых ( и соответственно) не обязательно равны 1, вышеупомянутое выражение умножается на
Основным свойством результанта, и его основным применением, является следующее: результант — многочлен от коэффициентов и , равный нулю в том и только в том случае, когда у многочленов и имеется общий корень, возможно, в некотором расширении поля .
Дискриминант — это, с точностью до знака, результант многочлена и его производной, поделённый на старший коэффициент многочлена; тем самым, дискриминант равен нулю тогда и только тогда, когда у многочлена есть кратные корни.
Если , то
, т.е. результант тогда и только тогда равен нулю, когда НОД многочленов нетривиален. Вообще, вычисление результанта может быть произведено с помощью алгоритма Евклида, и именно так вычисляется результант в различных матпакетах.
Для многочленов существуют многочлены с такие, что
. Многочлены с могут быть получены из представления результанта определителем в форме Сильвестра, в котором последний столбец заменён на для или на для .
Для сепарабельного многочлена, в частности, для полей характеристики нуль, результант равен произведению значений одного из многочленов по корням другого, как и раньше, произведение берётся с учётом кратности корней: